Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
1.
J Physiol ; 602(5): 967-987, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38294810

RESUMEN

Aldosterone is responsible for maintaining volume and potassium homeostasis. Although high salt consumption should suppress aldosterone production, individuals with hyperaldosteronism lose this regulation, leading to a state of high aldosterone despite dietary sodium consumption. The present study examines the effects of elevated aldosterone, with or without high salt consumption, on the expression of key Na+ transporters and remodelling in the distal nephron. Epithelial sodium channel (ENaC) α-subunit expression was increased with aldosterone regardless of Na+ intake. However, ENaC ß- and γ-subunits unexpectedly increased at both a transcript and protein level with aldosterone when high salt was present. Expression of total and phosphorylated Na+ Cl- cotransporter (NCC) significantly increased with aldosterone, in association with decreased blood [K+ ], but the addition of high salt markedly attenuated the aldosterone-dependent NCC increase, despite equally severe hypokalaemia. We hypothesized this was a result of differences in distal convoluted tubule length when salt was given with aldosterone. Imaging and measurement of the entire pNCC-positive tubule revealed that aldosterone alone caused a shortening of this segment, although the tubule had a larger cross-sectional diameter. This was not true when salt was given with aldosterone because the combination was associated with a lengthening of the tubule in addition to increased diameter, suggesting that differences in the pNCC-positive area are not responsible for differences in NCC expression. Together, our results suggest the actions of aldosterone, and the subsequent changes related to hypokalaemia, are altered in the presence of high dietary Na+ . KEY POINTS: Aldosterone regulates volume and potassium homeostasis through effects on transporters in the kidney; its production can be dysregulated, preventing its suppression by high dietary sodium intake. Here, we examined how chronic high sodium consumption affects aldosterone's regulation of sodium transporters in the distal nephron. Our results suggest that high sodium consumption with aldosterone is associated with increased expression of all three epithelial sodium channel subunits, rather than just the alpha subunit. Aldosterone and its associated decrease in blood [K+ ] lead to an increased expression of Na-Cl cotransporter (NCC); the addition of high sodium consumption with aldosterone partially attenuates this NCC expression, despite similarly low blood [K+ ]. Upstream kinase regulators and tubule remodelling do not explain these results.


Asunto(s)
Hipopotasemia , Sodio en la Dieta , Humanos , Sodio en la Dieta/farmacología , Sodio en la Dieta/metabolismo , Sodio/metabolismo , Aldosterona/farmacología , Aldosterona/metabolismo , Canales Epiteliales de Sodio/metabolismo , Hipopotasemia/metabolismo , Túbulos Renales Distales/metabolismo , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Potasio/metabolismo
2.
Am J Physiol Renal Physiol ; 324(6): F603-F616, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141145

RESUMEN

The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.


Asunto(s)
Hipopotasemia , Deficiencia de Potasio , Animales , Ratones , Adenosina Trifosfatasas , Homeostasis , Hipopotasemia/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Deficiencia de Potasio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
3.
Sheng Li Xue Bao ; 75(2): 216-230, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37089096

RESUMEN

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Asunto(s)
Alcalosis , Síndrome de Bartter , Síndrome de Gitelman , Hiperpotasemia , Hipertensión , Hipopotasemia , Seudohipoaldosteronismo , Humanos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Potasio/metabolismo , Aldosterona/metabolismo , Hipopotasemia/metabolismo , Síndrome de Gitelman/metabolismo , Hiperpotasemia/metabolismo , Relevancia Clínica , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Distales/metabolismo , Sodio/metabolismo , Alcalosis/metabolismo , Agua/metabolismo , Riñón/metabolismo
5.
J Physiol ; 601(13): 2711-2731, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36752166

RESUMEN

Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.


Asunto(s)
Antiarrítmicos , Hipopotasemia , Humanos , Antiarrítmicos/farmacología , Hipopotasemia/metabolismo , Técnicas Electrofisiológicas Cardíacas , Canales Iónicos/metabolismo , Arritmias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo
6.
Braz J Med Biol Res ; 56: e12392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790288

RESUMEN

Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.


Asunto(s)
Hiperpotasemia , Hipopotasemia , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Sodio/metabolismo , Hipopotasemia/metabolismo , Hiperpotasemia/metabolismo , Túbulos Renales Distales/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Ratones Noqueados , Homeostasis , Potasio/metabolismo
7.
Acta Physiologica Sinica ; (6): 216-230, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-980999

RESUMEN

Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.


Asunto(s)
Humanos , Síndrome de Bartter/metabolismo , Seudohipoaldosteronismo/metabolismo , Potasio/metabolismo , Aldosterona/metabolismo , Hipopotasemia/metabolismo , Síndrome de Gitelman/metabolismo , Hiperpotasemia/metabolismo , Relevancia Clínica , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Distales/metabolismo , Sodio/metabolismo , Hipertensión , Alcalosis/metabolismo , Agua/metabolismo , Riñón/metabolismo
8.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870644

RESUMEN

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Asunto(s)
Hipopotasemia , Simportadores del Cloruro de Sodio , Animales , Humanos , Ratones , Cloruros/metabolismo , Células HEK293 , Hipopotasemia/genética , Hipopotasemia/metabolismo , Túbulos Renales Distales/metabolismo , Fosforilación , Potasio/metabolismo , Canales de Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Simportadores del Cloruro de Sodio/metabolismo
9.
FASEB J ; 36(8): e22455, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35899468

RESUMEN

Hypokalemia causes ectopic heartbeats, but the mechanisms underlying such cardiac arrhythmias are not understood. In reduced serum K+ concentrations that occur under hypokalemia, K2P1 two-pore domain K+ channels change ion selectivity and switch to conduct inward leak cation currents, which cause aberrant depolarization of resting potential and induce spontaneous action potential of human cardiomyocytes. K2P1 is expressed in the human heart but not in mouse hearts. We test the hypothesis that K2P1 leak cation channels contribute to ectopic heartbeats under hypokalemia, by analysis of transgenic mice, which conditionally express induced K2P1 specifically in hearts, mimicking K2P1 channels in the human heart. Conditional expression of induced K2P1 specifically in the heart of hypokalemic mice results in multiple types of ventricular ectopic beats including single and multiple ventricular premature beats as well as ventricular tachycardia and causes sudden death. In isolated mouse hearts that express induced K2P1, sustained ventricular fibrillation occurs rapidly after perfusion with low K+ concentration solutions that mimic hypokalemic conditions. These observed phenotypes occur rarely in control mice or in the hearts that lack K2P1 expression. K2P1-expressing mouse cardiomyocytes of transgenic mice much more frequently fire abnormal single and/or rhythmic spontaneous action potential in hypokalemic conditions, compared to wild type mouse cardiomyocytes without K2P1 expression. These findings confirm that K2P1 leak cation channels induce ventricular ectopic beats and sudden death of transgenic mice with hypokalemia and imply that K2P1 leak cation channels may play a critical role in human ectopic heartbeats under hypokalemia.


Asunto(s)
Hipopotasemia , Complejos Prematuros Ventriculares , Potenciales de Acción , Animales , Cationes/metabolismo , Muerte Súbita , Humanos , Hipopotasemia/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Complejos Prematuros Ventriculares/metabolismo
10.
Acta Physiol (Oxf) ; 234(4): e13802, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35178888

RESUMEN

AIM: This study investigated whether enhanced histone acetylation, achieved by inhibiting histone deacetylases (HDACs), could prevent decreased aquaporin-2 (AQP2) expression during hypokalaemia. METHODS: Male Wistar rats were fed a potassium-free diet with or without 4-phenylbutyric acid (4-PBA) or the selective HDAC3 inhibitor RGFP966 for 4 days. Primary renal inner medullary collecting duct (IMCD) cells and immortalized mouse cortical collecting duct (mpkCCD) cells were cultured in potassium-deprivation medium with or without HDAC inhibitors. RESULTS: 4-PBA increased the levels of AQP2 mRNA and protein in the kidney inner medullae in hypokalaemic (HK) rats, which was associated with decreased urine output and increased urinary osmolality. The level of acetylated H3K27 (H3K27ac) protein was decreased in the inner medullae of HK rat kidneys; this decrease was mitigated by 4-PBA. The H3K27ac levels were decreased in IMCD and mpkCCD cells cultured in potassium-deprivation medium. Decreased H3K27ac in the Aqp2 promoter region was associated with reduced Aqp2 mRNA levels. HDAC3 protein expression was upregulated in mpkCCD and IMCD cells in response to potassium deprivation, and the binding of HDAC3 to the Aqp2 promoter was also increased. RGFP966 increased the levels of H3K27ac and AQP2 proteins and enhanced binding between H3K27ac and AQP2 in mpkCCD cells. Furthermore, RGFP966 reversed the hypokalaemia-induced downregulation of AQP2 and H3K27ac and alleviated polyuria in rats. RGFP966 increased interstitial osmolality in the kidney inner medullae of HK rats but did not affect urinary cAMP levels. CONCLUSION: HDAC inhibitors prevented the downregulation of AQP2 induced by potassium deprivation, probably by enhancing H3K27 acetylation.


Asunto(s)
Hipopotasemia , Túbulos Renales Colectores , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Hipopotasemia/metabolismo , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Potasio/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
11.
Lasers Med Sci ; 37(2): 1081-1093, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34173122

RESUMEN

Cancer continues to be the most dangerous disease around the world; it causes electrolyte imbalance as well as metabolic changes. There is a complicated relationship between electrolyte disorder and cancer. Cancer patients commonly pass with abnormalities in serum electrolyte levels such as hypokalemia, hyperkalemia, hyponatremia, and hypercalcemia. So, these electrolyte imbalances indicate the existence of paraneoplastic processes and help come to a more informed prognosis. Hypokalemia is defined as a serum potassium concentration below 3.5 mmol/L and it is the second common electrolyte imbalance seen in patients with malignant diseases. In this paper, the contribution of serum potassium concentration to tumor progression was studied by applying a promising and non-invasive technique called laser-induced breakdown spectroscopy (LIBS). It was found that there is a correlation between hypokalemia and the colorectal cancer problem. Also, significant serum potassium concentration differences were detected among two different stages of the same cancer and also between two groups of the same stage of a cancer held in common but one of them suffers from hypercalcemia. In addition, the optimum conditions of LIBS setup were arranged such that it will be suitable to work with serum samples on glass substrate.


Asunto(s)
Neoplasias Colorrectales , Hipercalcemia , Hipocalcemia , Hipopotasemia , Neoplasias Colorrectales/complicaciones , Humanos , Hipercalcemia/complicaciones , Hipercalcemia/metabolismo , Hipocalcemia/complicaciones , Hipocalcemia/metabolismo , Hipopotasemia/complicaciones , Hipopotasemia/metabolismo , Potasio , Suero/metabolismo , Análisis Espectral
12.
Nutrients ; 13(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063969

RESUMEN

Potassium (K), the main cation inside cells, plays roles in maintaining cellular osmolarity and acid-base equilibrium, as well as nerve stimulation transmission, and regulation of cardiac and muscle functions. It has also recently been shown that K has an antihypertensive effect by promoting sodium excretion, while it is also attracting attention as an important component that can suppress hypertension associated with excessive sodium intake. Since most ingested K is excreted through the kidneys, decreased renal function is a major factor in increased serum levels, and target values for its intake according to the degree of renal dysfunction have been established. In older individuals with impaired renal function, not only hyperkalemia but also hypokalemia due to anorexia, K loss by dialysis, and effects of various drugs are likely to develop. Thus, it is necessary to pay attention to K management tailored to individual conditions. Since abnormalities in K metabolism can also cause lethal arrhythmia or sudden cardiac death, it is extremely important to monitor patients with a high risk of hyper- or hypokalemia and attempt to provide early and appropriate intervention.


Asunto(s)
Estado Nutricional/fisiología , Potasio/metabolismo , Insuficiencia Renal Crónica/metabolismo , Adulto , Anciano , Presión Sanguínea/efectos de los fármacos , Femenino , Humanos , Hiperpotasemia/etiología , Hiperpotasemia/metabolismo , Hipopotasemia/etiología , Hipopotasemia/metabolismo , Riñón/metabolismo , Masculino , Persona de Mediana Edad , Ingesta Diaria Recomendada , Insuficiencia Renal Crónica/complicaciones
13.
Intern Emerg Med ; 16(7): 1945-1950, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33484453

RESUMEN

In patients visiting the emergency department (ED), a potential association between electrolytes disturbance and coronavirus disease 2019 (COVID-19) has not been well studied. We aim to describe electrolyte disturbance and explore risk factors for COVID-19 infection in patients visiting the ED. We carried out a case-control study in three hospitals in France, including adult ED inpatients (≥ 18 years old). A total of 594 ED case patients in whom infection with COVID-19 was confirmed, were matched to 594 non-COVID-19 ED patients (controls) from the same period, according to sex and age. Hyponatremia was defined by a sodium of less than 135 mmol/L (reference range 135-145 mmol/L), hypokalemia by a potassium of less than 3.5 mmol/L (reference range 3.5-5.0 mmol/L), and hypochloremia by a chloride of less than 95 mmol/L (reference range 98-108 mmol/L). Among both case patients and controls, the median (IQR) age was 65 years (IQR 51-76), and 44% were women. Hyponatremia was more common among case patients than among controls, as was hypokalemia and hypochloremia. Based on the results of the multivariate logistic regression, hyponatremia, and hypokalemia were associated with COVID-19 among case patients overall, with an adjusted odds ratio of 1.89 [95% CI 1.24-2.89] for hyponatremia and 1.76 [95% CI 1.20-2.60] for hypokalemia. Hyponatremia and hypokalemia are independently associated with COVID-19 infection in adults visiting the ED, and could act as surrogate biomarkers for the emergency physician in suspected COVID-19 patients.


Asunto(s)
Desequilibrio Ácido-Base/metabolismo , COVID-19/metabolismo , Servicio de Urgencia en Hospital , Índice de Severidad de la Enfermedad , Desequilibrio Hidroelectrolítico/metabolismo , Desequilibrio Ácido-Base/complicaciones , Adulto , Anciano , COVID-19/complicaciones , Estudios de Casos y Controles , Electrólitos , Femenino , Humanos , Hipopotasemia/metabolismo , Hiponatremia/metabolismo , Masculino , Persona de Mediana Edad , Factores de Riesgo , Desequilibrio Hidroelectrolítico/complicaciones
14.
BMJ Case Rep ; 14(1)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495177

RESUMEN

Pheochromocytoma occasionally engenders catecholamine-induced hypertension crisis. Pheochromocytoma is clinically identified in 0.1%-5.7% of patients with neurofibromatosis type 1 (NF1), which is 10 times more frequently than in healthy individuals. This report describes a case of newly diagnosed NF1 presenting with pheochromocytoma crisis, with severe electrolyte depletion and deteriorating recurrent ventricular tachycardia storm. Characteristic skin lesions such as café-au-lait macules and neurofibromas contributed to the diagnosis of NF1 and pheochromocytoma. No recurrence of electrolyte depletion was found after the adrenalectomy. Primary care physicians must distinguish the characteristic skin lesions of NF1, such as café-au-lait macules and neurofibromas and recognise the risk for pheochromocytoma.


Asunto(s)
Neurofibromatosis 1/diagnóstico , Feocromocitoma/diagnóstico , Taquicardia Ventricular/terapia , Desequilibrio Hidroelectrolítico/terapia , 3-Yodobencilguanidina , Adrenalectomía , Alcoholismo/complicaciones , Catecolaminas/orina , Cloruros/sangre , Humanos , Hipopotasemia/etiología , Hipopotasemia/metabolismo , Hipopotasemia/terapia , Hiponatremia/etiología , Hiponatremia/metabolismo , Hiponatremia/terapia , Hipofosfatemia/etiología , Hipofosfatemia/metabolismo , Hipofosfatemia/terapia , Masculino , Metanefrina/orina , Persona de Mediana Edad , Feocromocitoma/complicaciones , Feocromocitoma/metabolismo , Feocromocitoma/cirugía , Cintigrafía , Radiofármacos , Taquicardia Ventricular/etiología , Desequilibrio Hidroelectrolítico/etiología , Desequilibrio Hidroelectrolítico/metabolismo
15.
J Agric Food Chem ; 68(40): 11121-11127, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32921052

RESUMEN

This paper, for the first time, provides evidence that current practices that lead to agricultural crop removal of potassium are unsustainable and likely contributed to the decline in dietary potassium intake and rise in hypokalemia prevalence in the US population. Potassium concentrations in beef, pork, turkey, fruit, vegetables, cereal crops, and so forth decreased between 1999 and 2015 based on the examination of potassium values of food items of USDA standard reference. Ratios of potassium input to removal by crops between 1987 and 2014, potassium in topsoil, and crop-available soil potassium in US farms all declined in recent years. Reported reductions in dietary potassium intake correspond to these decreases in the food supply and to increases in hypokalemia prevalence in the US population. Results of this paper provide new understanding on links between potassium management in agricultural practices and potassium intake deficits, which is needed for combating increasing hypokalemia prevalence in the US population.


Asunto(s)
Deficiencia de Potasio/epidemiología , Potasio en la Dieta/análisis , Agricultura , Animales , Bovinos , Pollos , Fertilizantes/análisis , Abastecimiento de Alimentos , Frutas/química , Frutas/metabolismo , Humanos , Hipopotasemia/sangre , Hipopotasemia/epidemiología , Hipopotasemia/metabolismo , Carne/análisis , Deficiencia de Potasio/sangre , Deficiencia de Potasio/metabolismo , Potasio en la Dieta/sangre , Potasio en la Dieta/metabolismo , Suelo/química , Porcinos , Estados Unidos/epidemiología , Verduras/química , Verduras/metabolismo
16.
BMC Nephrol ; 21(1): 328, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758178

RESUMEN

BACKGROUND: Gitelman syndrome is a rare salt-losing renal tubular disorder associated with mutation of SLC12A3 gene, which encodes the Na-Cl co-transporter (NCCT). Gitelman syndrome is characterized by hypokalemia, metabolic alkalosis, hypomagnesemia, hypocalciuria, and renin-angiotensin-aldosterone system (RAAS) activation. Different SLC12A3 variants may lead to phenotypic variability and severity. METHODS: In this study, we reported the clinical features and genetic analysis of a Chinese pedigree diagnosed with Gitelman syndrome. RESULTS: The proband exhibited hypokalaemia, hypomagnesemia, metabolic alkalosis, but hypercalciuria and kidney stone formation. The increased urinary calcium excretion made it confused to Bartter syndrome. The persistent renal potassium wasting resulted in renal tubular lesions, and might affect urinary calcium reabsorption and excretion. Genetic analysis revealed mutations of SLC12A3 gene with c.433C > T (p.Arg145Cys), c.1077C > G (p.Asn359Lys), and c.1666C > T (p.Pro556Ser). Potential alterations of structure and function of NCCT protein due to those genetic variations of SLC12A3 are predicted. Interestingly, one sibling of the proband carried the same mutant sites and exhibited similar clinical features with milder phenotypes of hypokalemia and hypomagnesemia, but hypocalciuria rather than hypercalciuria. Family members with at least one wild type copy of SLC12A3 had normal biochemistry. With administration of spironolactone, potassium chloride and magnesium supplement, the serum potassium and magnesium were maintained within normal ranges. CONCLUSIONS: In this study, we identified compound mutations of SLC12A3 associated with varieties of clinical features. Further efforts are needed to investigate the diversity in clinical manifestations of Gitelman syndrome and its correlation with specific SLC12A3 mutations.


Asunto(s)
Síndrome de Gitelman/genética , Adulto , Anciano , Alcalosis/genética , Alcalosis/metabolismo , Síndrome de Bartter/metabolismo , China , Femenino , Genotipo , Síndrome de Gitelman/metabolismo , Humanos , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipopotasemia/genética , Hipopotasemia/metabolismo , Magnesio/sangre , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Eliminación Renal , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Desequilibrio Hidroelectrolítico/genética , Desequilibrio Hidroelectrolítico/metabolismo
17.
BMC Nephrol ; 21(1): 339, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787843

RESUMEN

BACKGROUND: The nucleotide reverse transcriptase inhibitor Tenofovir Alafenamide (TAF) is a novel pro-drug of tenofovir (TFV) and possesses a superior renal safety profile compared with tenofovir disoproxil fumerate (TDF). Due to unique pharmacokinetic characteristics, treatment with TAF is not associated with significant renal proximal tubular accumulation of TFV. TAF is associated with a lower risk of acute kidney injury, chronic kidney disease, proteinuria and renal proximal tubular dysfunction than treatment with TDF. No cases of Fanconi syndrome have been reported in clinical trials of TAF. It is unknown whether treatment with TAF can lead to accumulation of TFV in proximal tubular cells and cause nephrotoxicity under certain clinical circumstances. CASE PRESENTATION: Here we report the case of a patient on stable TAF-based antiretroviral therapy with for HIV-1 infection who developed proximal tubulopathy when treated with gentamicin for febrile neutropenia in the context of relapsed Hodgkin lymphoma. Eighteen days after commencing chemotherapy for relapsed Hodgkin lymphoma the patient presented to hospital with fevers, hypotension and neutropenia. The patient was commenced on piperacillin, tazobactam and gentamicin. Within 24 h the patient developed marked hypokalaemia and hypophosphataemia requiring intravenous replacement therapy. There was proteinuria, glycosuria and evidence of marked urinary electrolyte wasting, consistent with acute proximal tubular dysfunction. Eleven days after the gentamicin was stopped the serum biochemistry normalised. The urinary electrolyte wasting and proteinuria had improved, and the glycosuria had resolved. CONCLUSION: This is the first case report to describe acute renal proximal tubulopathy in an HIV-infected patient treated with TAF and gentamicin. As the number of patients prescribed TAF outside the clinical trial setting increases, so too does the potential for previously unreported drug interactions and adverse events. Clinicians need to be aware of potential unreported adverse drug reactions as the use of TAF becomes increasingly common in clinical practice.


Asunto(s)
Alanina/efectos adversos , Antibacterianos/efectos adversos , Antivirales/efectos adversos , Neutropenia Febril Inducida por Quimioterapia/tratamiento farmacológico , Síndrome de Fanconi/inducido químicamente , Gentamicinas/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Tenofovir/análogos & derivados , Enfermedad Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neutropenia Febril Inducida por Quimioterapia/etiología , Deprescripciones , Interacciones Farmacológicas , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/terapia , Glucosuria/inducido químicamente , Glucosuria/metabolismo , Glucosuria/terapia , Enfermedad de Hodgkin/tratamiento farmacológico , Humanos , Hipopotasemia/inducido químicamente , Hipopotasemia/metabolismo , Hipopotasemia/terapia , Hipofosfatemia/inducido químicamente , Hipofosfatemia/metabolismo , Hipofosfatemia/terapia , Masculino , Persona de Mediana Edad , Proteinuria/inducido químicamente , Proteinuria/metabolismo , Proteinuria/terapia , Tenofovir/efectos adversos
18.
BMC Nephrol ; 21(1): 256, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631286

RESUMEN

BACKGROUND: Renal loss of potassium (K+) and magnesium (Mg2+) in salt losing tubulopathies (SLT) leads to significantly reduced Quality of Life (QoL) and higher risks of cardiac arrhythmia. The normalization of K+ is currently the most widely accepted treatment target, however in even excellently designed RCTs the increase of K+ was only mild and rarely normalized. These findings question the role of K+ as the ideal marker of potassium homeostasis in SLT. Aim of this hypothesis-generating study was to define surrogate endpoints for future treatment trials in SLT in terms of their usefulness to determine QoL and important clinical outcomes. METHODS: Within this prospective cross-sectional study including 11 patients with SLTs we assessed the biochemical, clinical and cardiological parameters and their relationship with QoL (RAND SF-36). The primary hypothesis was that QoL would be more dependent of higher aldosterone concentration, assessed by the transtubular-potassium-gradient (TTKG). Correlations were evaluated using Pearson's correlation coefficient. RESULTS: Included patients were mainly female (82%, mean age 34 ± 12 years). Serum K+ and Mg2+ was 3.3 ± 0.6 mmol/l and 0.7 ± 0.1 mmol/l (mean ± SD). TTKG was 9.5/3.4-20.2 (median/range). While dimensions of mental health mostly correlated with serum Mg2+ (r = 0.68, p = 0.04) and K+ (r = 0.55, p = 0.08), better physical health was associated with lower aldosterone levels (r = -0.61, p = 0.06). TTKG was neither associated with aldosterone levels nor with QoL parameters. No relevant abnormalities were observed in neither 24 h-ECG nor echocardiography. CONCLUSIONS: Hyperaldosteronism, K+ and Mg2+ were the most important parameters of QoL. TTKG was no suitable marker for hyperaldosteronism or QoL. Future confirmatory studies in SLT should assess QoL as well as aldosterone, K+ and Mg2+.


Asunto(s)
Síndrome de Bartter/fisiopatología , Síndrome de Gitelman/fisiopatología , Hiperaldosteronismo/fisiopatología , Hipopotasemia/fisiopatología , Magnesio/metabolismo , Calidad de Vida , Adulto , Aldosterona/metabolismo , Síndrome de Bartter/metabolismo , Síndrome de Bartter/psicología , Femenino , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/psicología , Homeostasis , Humanos , Hiperaldosteronismo/metabolismo , Hiperaldosteronismo/psicología , Hipopotasemia/metabolismo , Hipopotasemia/psicología , Masculino , Persona de Mediana Edad , Potasio/metabolismo , Estudios Prospectivos , Desequilibrio Hidroelectrolítico/metabolismo , Desequilibrio Hidroelectrolítico/fisiopatología , Desequilibrio Hidroelectrolítico/psicología , Adulto Joven
19.
BMC Nephrol ; 21(1): 296, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703174

RESUMEN

BACKGROUND: Sodium bicarbonate, in the form of baking soda, is widely used as a home remedy, and as an additive for personal and household cleaning products. Its toxicity has previously been reported following oral ingestion in the setting of dyspepsia. However, its use as a non-ingested agent, like a toothpaste additive, has not been reported as a potential cause of toxicity. CASE PRESENTATION: We are reporting a case of an 80-year-old woman who presented with chronic metabolic alkalosis and hypokalemia secondary to exogenous alkali exposure from baking soda as a toothpaste additive, which might have represented an underreported ingestion of the substance. CONCLUSIONS: Considering that one teaspoon of baking soda provides approximately 59 m-equivalents (mEq) of bicarbonate, specific questioning on its general use should be pursued in similar cases of chloride resistant metabolic alkalosis.


Asunto(s)
Alcalosis/inducido químicamente , Cloruros/metabolismo , Hipopotasemia/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Bicarbonato de Sodio/efectos adversos , Pastas de Dientes , Anciano de 80 o más Años , Alcalosis/metabolismo , Femenino , Humanos , Hipopotasemia/metabolismo , Insuficiencia Renal Crónica/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...